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Abstract
We study the dynamical phase transition of the glass matrix model by using
the replica method for deterministic models. In the glass matrix model, N
dynamical variables are defined by P component vectors which make states of
a particle. Each component of a vector is assumed to take ±1. To perform
replica calculation, auxiliary variables are introduced to control the order of
the sum of replicated partition function. These variables work like quenched
random variables of the usual replica method. Using the approximation for
small P/N and assuming the homogeneity of the component space, we find
that the replica theory is similar to that of the previously studied glassy spin
models. We study the dynamical solution, which is defined by imposing the
marginally stable condition for a one-step replica symmetry breaking ansatz.
To find the marginally stable condition, we study the fluctuation modes in
replica spaces and component space. The results of simulated annealing is
presented to compare with the analytic result. The transition temperatures
suggested by the two approaches are consistent. However, the agreement is
modest in the sense that simulated annealing shows richer behavior than the
replica results, mainly due to the lower energy states, which appear by the slow
annealing schedule.

PACS numbers: 05.20.−y, 05.50.+q, 64.60C

1. Introduction

Glassy systems are characterized by the enormous number of metastable states at low
temperature [1]. Because of these states, the dynamical property changes at glass transition
temperature, which is called a dynamical phase transition. Below this temperature, very slow
parts of correlation and response function arise and describe a long-time property such as
ageing. This is a non-equilibrium phenomenon and transition temperature is not identified by
a static approach such as the study of partition function. Although a dynamical method has
been applied to some mean field models [2–4], direct study of dynamics is very difficult in
many cases.

1751-8113/08/125002+14$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/12/125002
http://stacks.iop.org/JPhysA/41/125002


J. Phys. A: Math. Theor. 41 (2008) 125002 K Nokura

Recently, by the development of the replica theory of spin glass models [5], it has been
suggested that glassy systems can be discussed by referring to the replica method [1, 6]. Some
authors pointed out that there is a close relation between the replica method and the dynamical
approach [7]. Further, it was suggested that the replica mean field solution with marginal
stability describes the dynamical phase transition and glassy states at low temperature [8, 9].
This idea works well for random spin models and nonrandom frustrated spin models to study
low-temperature phase, especially to identify the transition temperature [10–12]. It is highly
desirable to extend the study to glassy particle systems.

Particle systems are characterized by the large space of states when compared with spin
systems. Taking into account this feature, several authors suggested the mean field model
of the deterministic glass model called the glass matrix model [13, 17]. In this model, the
coordinates of the particle are represented by P-component vectors to model a large space of
particle state, where P is of the same order of the number of particles N. Using the conventional
terminology, we call the P-component vector a spin. Interactions are made of inner products
of these spins. The simplest nontrivial energy function is given by

H
{
Sa

i

} = 1

4N

∑
i �=j

(∑
a

Sa
i Sa

j

)2

− 1

4
PN. (1)

To be specific, we discuss the case where each component takes ±1. Thus for the N spin
system, we have dynamical variables Sa

i = ±1 (i = 1, 2, . . . , N, a = 1, 2, . . . , P ). The
volume of particle states is 2P . Obviously, this energy function implies that the N vectors
should be orthogonal to each other to give low-energy states. For general Sa

i , each inner
product is of order

√
P , which gives the energy of order PN . This is comparable to the

high-temperature entropy given by PN ln 2. To have nontrivial dynamics, P should be the
same order of N, as we will see in the following section. We also note the duality between
i and a, that is, the energy function can be written by the inner products of P vectors which
have N components.

The partition function of the glass matrix model was evaluated in the paramagnetic phase
[13]. It was found that the entropy becomes zero at finite temperature, which implies that there
is a phase transition above this temperature. By numerical simulations, it was shown that the
glass-phase transition takes place at finite temperature. However, analytic study of transition
temperature and low-temperature phase, even by some kind of approximation, seems to be
absent more than 10 years after the suggestion.

The purpose of this paper is to apply the replica method to the glass matrix model and
study the dynamical transition and low-temperature property. The replica method we adopt
is based on a transformation of dynamical variables, which was applied for long-range anti-
ferromagnets (LRAF) a few years ago [11, 12]. By this method, we can formulate the replica
theory for the glass matrix model and discuss the glassy states by using the idea of marginal
stability.

The plan of this paper is as follows. In the following section, we present the replica
formulation for the glass matrix model. We find that the calculation becomes extremely
simple if we restrict ourselves to small α = P/N , where the similarity to the anti-Hebbian
(AH) model [10] becomes apparent. We also show that the action becomes similar to the
replica theory of the mean field spin models by introducing the assumption of homogeneity
of the component space. In section 3, we discuss the one-step replica symmetry breaking
(RSB) solution. In section 4, we discuss the fluctuation around the saddle point to find the
marginally stable condition. In section 5, we present the results of simulation to compare with
the analytic results. Section 6 is devoted to some discussion.
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2. The replica method for the glass matrix model

The replica method was originally introduced to find quenched random averages of the
free energy, i.e., the logarithm of the partition function, by using the relation ln Z =
limn→0(Z

n − 1)/n. In the application to the mean field model, we obtain the effective
action which is expressed by overlaps between metastable states. Apart from the study of the
free energy average, the property of overlap order parameter gives deep information of the
spin glass states. This suggests that if there are many pure states in the system, the replicated
partition function can give a meaningful idea of the property of metastable states even if there
is no randomness. This is the motivation for introducing the replica method for deterministic
models.

In this section, we first discuss the high-temperature expansion of the glass matrix model
for small α and then study the replica method. The study of high-temperature expansion is
helpful in discussing the replica method.

2.1. High-temperature expansion

Let us discuss the high-temperature expansion for the glass matrix model for small α. We find
that the expression is very similar to that of the previously studied glassy spin models to the
lowest order of α.

The partition function for H
{
Sa

i

}
is given by

Z =
∑
{Sa

i }
exp

(−βH
{
Sa

i

})
, (2)

where β = 1/T is an inverse temperature. Substituting the energy function into the partition
function, we have

Z =
∑
{Sa

i }

∏
i<j,a<b

exp

(
− β

N
Sa

i Sb
i S

a
j Sb

j

)
. (3)

In the high-temperature expansion, the partition function is expanded in terms of β/N . The
exact solution is given by the theory of the matrix model [13]. For small α, the leading
contribution comes from the products of the same component indices that make a loop. For
these contributions, the products Sa

i Sb
i work like a single variable. In this way, we obtain

Z = exp
(− 1

4P(P − 1)(ln(1 + β) − β) + PN ln 2
)

(4)

for small α. As expected, this expression is similar to that of the AH model. In appendix A,
we present another derivation of this result. Then the free-energy density f = −ln Z/βPN ,
entropy s and energy e are given by

f = − 1

β
ln 2 +

1

4
α

(
1

β
ln(1 + β) − 1

)
(5)

s = ln 2 +
1

4
α

(
β

1 + β
− ln(1 + β)

)
(6)

e = 1

4

α

1 + β
− 1

4
α. (7)

These expressions lead to an interesting insight into the low-temperature property. Entropy
becomes zero at T = Ts ∼ exp(−1 − 4 ln 2/α), which implies that there should be some
phase transition at finite temperature. A similar result is also found in spin models.
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Simulated annealing shows that the temperature dependence of the energy does not obey
the above equation below a certain temperature, signaling the existence of phase transition. In
the following subsection, we discuss the replica theory by restricting ourselves to small α.

2.2. The replica method

Now we discuss the replica method for the glass matrix model. This is based on a simple
equation introduced as follows [11]. In the first step, we introduce n replicas Saα

i for each
Ising variable and write

Zn =
∑
{Saα

i }
exp

(
−β

n∑
α=1

H
{
Saα

i

})
. (8)

For this expression, we want to perform partial statistical summation with fixed correlation
among replicas. This is achieved by the transformation common to all replica defined by
Saα

i → ηa
i S

aα
i , where auxiliary variables ηa

i = ±1. We note that Saα
i S

aβ

i are invariant for an
arbitrary ηa

i and Zn does not change, thanks to the summation over each replica. Thus by
performing the sum over ηa

i , we obtain the expression

Zn = 1

2PN

∑
{ηa

i }

∑
{Saα

i }
exp

(
−β

n∑
α=1

H
{
ηa

i S
aα
i

})
. (9)

With regards to the usual replica method, ηa
i work like quenched randomness. This formula

gives a highly nontrivial expression when we perform the ηa
i sum first. This is feasible for

small α in the same way as the high-temperature expansion.
The replicated and transformed energy function is given by

n∑
α=1

H
{
ηa

i S
aα
i

} = 1

N

∑
i<j,a<b

ηa
i η

b
i η

a
j η

b
j�

ab
ij , (10)

where

�ab
ij =

n∑
α=1

Saα
i Sbα

i Saα
j Sbα

j . (11)

Although this expression looks rather complicated, we note that there is some analogy to the
replica method for random spin models, such as the Hopfield model [14] and the AH model
[10]. That is, each term in the energy function has the product of quenched variables with
two-site indices. This implies that the sum over ηa

i yields loop diagrams in terms of site.
The apparent difference is that dynamical variables and quenched variables have common
component indices a, b. This means that there can be order parameters which depend on
component indices. For this reason, the matrix model is similar to the particle model rather
than the spin model. In addition, due to four-body interaction among ηa

i , the sum over ηa
i is

much more complicated than the average over quenched randomness in spin models. However,
when we restrict ourselves to the lowest nontrivial order of α, we find the diagrams appearing
in the expansion in terms of β have the same structure as those of spin models, that is, one-loop
diagrams made of �ab

ij . In the following study, we concentrate on the lowest order of α.
After the summation over site indices, one-loop diagrams made of �ab

ij can be expressed
by the overlap defined by

Q
αβ

ab = 1

N

∑
i

Saα
i Sbα

i S
aβ

i S
bβ

i . (12)
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In this way, we obtain

Zn =
∑
{Saα

i }
exp

(
−1

2

∑
a<b

Tr{ln(1 + βQab) − β}
)

(13)

to the lowest order of α. Note in this expression, Tr works only on the replica indices and there
is no coupling among a different pair ab. Note Qαα

ab = 1 is included in the trace. Another
derivation of (13) is presented in appendix A.

For Q
αβ

ab with α �= β and a �= b, we write

1 =
∏

a<b,α<β

∫∫
N

P

d�
αβ

ab dQ
αβ

ab

2π
√−1

× exp

{
−N

P
�

αβ

ab

(
Q

αβ

ab − 1

N

∑
i

Saα
i Sbα

i S
aβ

i S
bβ

i

)}

and obtain

Zn =
∏

a<b,α<β

∫∫
N

P

d�
αβ

ab dQ
αβ

ab

2π
√−1

exp(−A{Q,�}), (14)

where the action is given by

A{Q,�} = G{Q} + K{Q,�} + F {�}, (15)

with

G{Q} = 1

2

∑
a<b

Tr{ln(1 + βQab) − β}

K{Q,�} = N

P

∑
a<b,α<β

�
αβ

abQ
αβ

ab

F {�} = −N ln Zn
P ,

where

Zn
P =

∑
{S}

exp
1

P

∑
a<b,α<β

�
αβ

ab SaαSbαSaβSbβ. (16)

In Zn
P , site indices i in Saα

i are dropped. To the lowest order of α, this expression defines the
one-site problem for the glass matrix model. Unlike the spin model, this one-site problem still
contains a large number of spin components. Note that the factor N/P is assigned for each
�

αβ

ab in (14) to have F {�}/N free from N.
The expression (14) contains the P(P − 1) folded integral over �

αβ

ab and Q
αβ

ab for each
replica pair. Thus we will have P(P − 1) folded integral around the saddle point even if it
is found. In section 4 and appendix C, we discuss the fluctuation modes around mean field
solution. The argument there implies that the contribution by these modes is of order P instead
of P 2. This justifies the saddle point approximation for glass matrix model.

In (16), couplings among different components can be treated by the mean field method
if we assume the homogeneity in component space, that is, �

αβ

ab = �αβ and Q
αβ

ab = Qαβ . By
this approximation, the replica theory substantially reduces to that of the spin models. With
mean fields �αβ , we have

Zn
P =

∑
{Saα}

exp
1

2P

∑
α<β

�αβ

⎧⎨
⎩

(∑
a

SaαSaβ

)2

− P

⎫⎬
⎭ . (17)
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Introducing Gaussian variables qαβ , we have

Zn
P =

∫ ∏
α<β

√
P�αβ dqαβ

√
2π

exp −1

2
P

∑
α<β

�αβ(qαβ)2 − 1

2

∑
α<β

�αβ

+ P ln
∑
Sα

exp
∑
α<β

�αβqαβSαSβ, (18)

where the component indices in Saα are dropped. This expression gives the one-site–one-
component problem of the mean field theory for the glass matrix model. Note that there are
terms of �αβ which are not proportional to P, which will be disregarded in the saddle point
approximation.

To summarize this section, we write the full expression of action at the homogeneous
saddle point

A{Q,�} = 1

4
P(P − 1) Tr{ln(1 + βQ) − β}

+
1

2
N(P − 1)

∑
α<β

�αβQαβ +
1

2
NP

∑
α<β

�αβ(qαβ)2

−NP ln
∑
{S}

exp

( ∑
α<β

�αβqαβSαSβ

)
.

This action is appealing since it has a similar structure to the replica theory of infinite range
spin glass models, although �αβ will depend on temperature. With this expression, it is easy
to study several well-known ansatz of the replica solution. In the following section, we discuss
the one-step RSB solution.

3. Replica symmetry breaking solutions

In this section, we study the one-step RSB solution for the action obtained in the previous
section. We will study the fluctuation modes around the saddle point solution in the following
section.

In the one-step RSB ansatz, the replica index is divided into n/m groups, which implies
Qαβ is divided into (n/m) × (n/m) blocks of size m × m. We assume that, in the diagonal
blocks, Qαβ = Q1 and in the off-diagonal blocks, Qαβ = Q0. Further, �αβ and qαβ

are assumed to have the same structure with �1,�0 and q1, q0, respectively, because the
correlation among replicas is controlled by the correlation among metastable states.

Using the assumption for order parameters, we evaluate the free energy in appendix B,
and obtain βf = − limn→0(Z

n − 1)/nPN as

βf = 1

4
α

{
1

m
ln(1 + βXm) +

(
1 − 1

m

)
ln(1 + βX1) +

βQ0

1 + βXm

− β

}

+
1

4
{(m − 1)�1Q1 − m�0Q0} +

1

4

{
(m − 1)q2

1�1 − mq2
0�0

}
+

1

2
q1�1 − 1

m

∫
Dx ln

∫
Dy(2coshA)m, (19)

where X1 = 1 − Q1, Xm = 1 − Q1 + m(Q1 − Q0), A = √
q0�0x +

√
q1�1 − q0�0y and

Dx = exp(−x2/2) dx/
√

2π . The saddle point equations are given by

�0 = αβ2Q0

(1 + βXm)2
�1 = αβ

m

(
1

1 + βX1
− 1

1 + βXm

)
+

αβ2Q0

(1 + βXm)2

6
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q0 =
∫

Dx(〈S〉)2 q1 =
∫

Dx〈S〉2,

where 〈S〉 = tanhA,

· · · =
∫

Dy · · · coshmA∫
DycoshmA

(20)

and Q0 = q2
0 ,Q1 = q2

1 .
We need one additional equation to determine the solution. According to the suggestion

[9], there are two kinds of RSB solution; one is static and other is dynamical, depending on the
equation. The static solution is expected to describe the absolute minimum state of the system
and dynamical solution is expected to describe the glassy states. In both cases, numerical
studies reveal that q0 = Q0 = �0 = 0. This implies that contributing states are not correlated
each other.

The static solution is given by the extreme value of f in terms of m, that is, by imposing
∂f/∂m = 0. According to the numerical study, this solution appears at the very low
temperature which is very close to Ts with q1 ∼ 1, q0 = 0, such that β

(
1 − q2

1

) ∼ 0.
This implies X1 ∼ 0 and Xm ∼ m. After a short calculation presented in appendix B, we have

f ∼ 1

4
α

(
1

βm
ln(1 + βm) − 1

)
− 1

βm
ln 2. (21)

This expression implies that (∂f/∂m)m=1 = 0 equals s = 0 approximately. This explains
that Ts is very close to the temperature TRSB, where the solution determined by ∂f/∂m = 0
appears. This aspect seems to be common in glassy models.

In the following section, we discuss the dynamical solution by imposing the marginally
stable condition.

4. Fluctuation around the mean field solution

In this section, we discuss the fluctuation modes around the mean field solution. Although
the fluctuation modes in replica space have been well studied [15, 16], our model has
fluctuations in component space which will require additional consideration. We are interested
in the marginally stable condition, which determine the dynamical phase transition and low-
temperature glassy states. The eigenmodes with the smallest eigenvalues with respect to all
fluctuation can be marginally stable modes.

To study the fluctuation modes around the saddle point, we set �
αβ

ab = �αβ + δ�
αβ

ab and
Q

αβ

ab = Qαβ + δQ
αβ

ab in (15), where �αβ and Qαβ are one-step RSB solutions. In G{Q}
and K{Q,�}, there are no couplings among different pair ab and it is enough to study the
fluctuation only in the replica space. On the other hand, in F {�}, there are couplings among
different component pairs.

Let us start with F {�}. The second-order terms in F {� + δ�} − F {�}, denoted by δ2F ,
are given by

δ2F {�} = N

2P 2
(〈	2〉 − 〈	〉2), (22)

where

	 =
∑

a<b,α<β

δ�
αβ

ab SaαSbαSaβSbβ (23)

and 〈· · ·〉 means an average by the weight of one-site–one-component problem defined
by (18). In this average, correlation among replicas of the same component variables remains.

7
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Thus for example, 〈SaαSbγ SaβSbδ〉 = 〈SaαSaβ〉〈Sbγ Sbδ〉 = qαβqγ δ , where qαβ = 〈SαSβ〉, etc.
Using this rule, we group the terms in D = 〈	2〉 − 〈	〉2 in terms of the number of different
component indices and obtain

D =
∑
a<b

∑
(αβ),(γ δ)

δ�
αβ

ab δ�
γδ

abA(αβ)(γ δ) +
∑

a �=b �=c

∑
(αβ),(γ δ)

δ�
αβ

ab δ�γδ
ac B(αβ)(γ δ), (24)

where all component indices are different in the sum and

A(αβ)(γ δ) = (qαβγ δ)2 − (qαβ)2(qγ δ)2 B(αβ)(γ δ) = qαβγ δqαβqγ δ − (qαβ)2(qγ δ)2,

with qαβγ δ = 〈SαSβSγ Sδ〉. We should note that these matrix elements do not depend on
component indices. We should also note that there is no restriction on replica indices at this
stage except α < β and γ < δ.

To diagonalize D in component space, denoting eigen modes by I, we set δ�
αβ

ab =∑
I δ�

αβ

I ψ
(I)
ab and find the normalized vector ψ

(I)
ab such that

∑
a<b ψ

(I)
ab ψ

(I ′)
ab = δI ′ and∑

a,b �=a,c �=a ψ
(I)
ab ψ(I ′)

ac = εI δI ′ . We discuss these vectors in appendix C. The largest εI is

given by the homogeneous mode ψ
(0)
ab = (P (P − 1)/2)−1/2, which gives ε0 ∼ 2P with

degeneracy 1. The second largest eigenvalue is given by ε1 ∼ P with degeneracy P − 1.
The smallest eigenvalue is given by ε2 = 0 with degeneracy P(P − 3)/2. As discussed in
appendix C, the largest εI give the softest modes in the space made of (δQδ�). Thus we can
restrict ourselves to the homogeneous eigenmode to have marginal stability. These arguments
also imply that the leading contribution comes from the second term in (24).

After finding contributing eigenmode in component space, the problem is reduced to the
well-studied problem of finding the eigenmodes around RSB solution [15, 16]. We set qαβ = 0
for α and β belonging to different blocks, and qαβ = q1 for α and β belonging to the same
blocks. By the argument presented above, it is sufficient to study B(αβ)(γ δ). For the replicas in
the same block, elements of B(αβ)(γ δ) is given by

P� = q2
1 − q4

1 Q� = q3
1 − q4

1 R� = q2
1 〈S〉4 − q4

1

for the cases (αβ) = (γ δ), α = γ and β �= δ, and (αβ) �= (γ δ), respectively, and zero for the
case that α, β, γ, δ belonging to different blocks. Then the eigenvalue of replicon modes is
given by

λ� = P� − 2Q� + R�

= q2
1 (1 − 〈S〉2)2

.

The study of the second-order terms of G{Q} is the same as spin models since there is no
coupling among different component pairs. Repeating the same procedure as for spin models,
we obtain λQ = αβ2/(1+βX1)

2 [9, 10]. In this way, we obtain the marginally stable condition
given by

1 − 2λ�λQ = 0. (25)

Note that the factor 2 comes from the largest eigenvalue ε0 as discussed in appendix C.
The energy obtained by the dynamical one-step RSB solution are presented in figures for

α = 0.3, 0.5 as well as those obtained by high-temperature expansion and simulation results,
which will be described in the following section. The behavior of dynamical RSB is similar
to that of the spin models. The transition temperature Tg is given by the temperature where
the saddle point equations and (25) have the solution with m = 1. At this temperature, q1 is
very close to 1 and increases to 1 as the temperature decreases, while m decreases to 0. The
energy obtained by dynamical RSB does not change much below Tg but starts to decrease at
lower temperature.

8
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-0.075

-0.073

-0.071

-0.069

0 0.02 0.04 0.06 0.08 0.1

e

T

Figure 1. Temperature dependence of energy obtained by several methods for α = 0.3. Full
line shows the high-temperature expansion. Broken line shows the RSB with marginally stable
condition, where Tg is 0.0243 and e at Tg is −0.0732. Points with error bars are averages and
standard deviations obtained by five runs of simulated annealing for (P, N) = (30, 100). MC
steps for each temperature is 100 and 1000 from top.

5. The results of simulated annealing

In the previous section, we found that the replica solution of the glass matrix model is quite
similar to that of the glassy spin models, although we have introduced several approximations
to obtain the results. Firstly, the calculation was performed to the lowest order of α. Secondly,
the saddle point variables are assumed to be independent of component indices. To see the
validity of these approximations, the comparison with simulation results will be important.

This section is devoted to the presentation of simulation results. We are interested
in the dynamical phase transition temperature Tg , which should be identified by the
change of dynamical property and temperature dependence of energy. Spin variables are
assumed to obey the Monte Carlo (MC) dynamics, where flips of components are performed
sequentially according to the probabilities controlled by the change of energy 	E, that is,
min[1, exp(−β	E)]. To compare with the results of the replica study, we restrict ourselves
to small α.

In figures 1 and 2, the results obtained by simulated annealing are presented for α = 0.3
and 0.5. The energy obtained by high-temperature expansion varies from 0 to −α/4 as
temperature decreases. Note that the scale of energy and temperature is very small in these
figures, implying that the transitions take place at rather low temperature. We note that the
energy by high-temperature expansion looks rather good even for α = 0.5. We can see that
the next-order term of α is also higher order of T. Basically, the energy obtained by simulated
annealing decreases as the temperature decreases in the high-temperature region according to
the high-temperature energy and ceases to decrease around a certain temperature, which is
much higher than TRSB, but close to Tg . Around this temperature, the acceptance rate of spin
flips decreases drastically. This means that the dynamical property changes drastically around
this temperature. The resulting configurations seem to be random and uncorrelated. These
aspects are common in glassy models such as the random orthogonal model [9], the AH model
[10] and LRAF [11, 12].
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T

Figure 2. Same as figure 1 but α = 0.5, where Tg is 0.0445 and e at Tg is −0.1197. Simulated
annealing is performed for (P, N) = (40, 80).

In figures, two types of annealing schedule are presented to show that the resulting
energies depend on the schedule. By increasing the number of MC steps at each temperature,
the resulting energy decreases slightly at least for the studied MC steps. As in figure 1, we
often observe that the energy starts to decrease rapidly slightly above Tg and becomes rather
low, much lower than the energy obtained by replica method for T < Tg . We suppose that,
as discussed in [13], there are crystal-like configurations with rather low energy. We also note
that there are an absolute minimum state and slightly disturbed states with very low energies,
as expected by static RSB solution. These configurations may affect the simulated annealing
for the studied system sizes. They will exist but will be difficult to be found by simulated
annealing for larger systems.

To summarize, the dynamical transition temperature obtained by the replica method is
consistent with the simulation results. However, the energies obtained by simulated annealing
have some spectrum depending on the annealing schedule, implying rich low-temperature
phase. The replica solution presented in this paper does not seem to cover these aspects.

6. Discussion

In this paper, we have studied the glass matrix model by the replica method, which is defined by
using a transformations common to all replicas. The glass matrix model is defined by the inner
products of P-component spin variables and is similar to the particle model in the sense that it
has a high-dimensional one-particle state. We restricted ourselves to small α = P/N , where
the high-temperature expansion is given by one-loop diagrams, as in the spin models. The
replica theory also becomes similar to that of the spin models if we assume the homogeneity
of the component space. By studying the fluctuation modes around the saddle point, we
found the marginality condition to identify the dynamical transition. The results of simulated
annealing is consistent with the dynamical phase transition determined by the replica theory.

By comparing the replica result and simulation, we note that the simulation results seem
much richer than the replica solution we presented in this paper. In the simulated annealing,
the resulting energies depend on the annealing schedule at least in the studied MC steps. As

10
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the decrease of temperature becomes slow, the states with lower energy appear. This aspect is
quite natural as a glass model since the marginally stable condition simply gives a boundary
of the region where pure states exist. Having some idea on the transition temperature, direct
study of dynamics at low temperature will be a quite interesting subject.

The existence of a parameter α is an interesting aspect of LRAF and glass matrix model.
Roughly speaking, α is a ratio between the number of constraint terms and the number of
degrees of freedom. In these models, the one-loop contribution to free energy is proportional
to α ln β. Consequently, Ts is proportional to exp(−c/α) for small α. By disregarding the
higher order terms of α, the description by two-replica order parameter becomes possible as
in the AH model. On the other hand, unlike the AH model, there are higher order terms of α

for the studied deterministic models. These contributions induce order parameters with more
than two replica indices. The study of the exact solution, including these contributions, will
be an interesting problem.

The energy function we have studied may be the simplest one in the glass matrix model.
Among some variations, the model with hard sphere particles and continuous dynamical
variables sounds interesting in various aspects [17]. For continuous variables, we cannot use
the argument of negative entropy to find phase transition. We also expect that the replica
method in this paper should be modified to cope with the continuous variables. The study of
these problems sounds quite challenging and will give a fruitful insight into glassy states.
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Appendix A

In this appendix, we present another derivation of the action (13). We first discuss the
high-temperature expansion to the lowest order of α. The energy function is written as

H = 1

2

∑
a<b

g

(
1√
N

N∑
i=1

Sa
i Sb

i

)
− 1

4
P 2 (A.1)

with g(x) = x2. In the following, we omit the constant terms in H for simplicity. Introducing
1 = ∫

dφ δ(φ − x) and integral representation for the delta-function, the partition function is
written as

Z =
∏
a<b

∫
dφab dφab

2π
√−1

exp

(
−β

2

∑
a<b

g(φab)

)
exp

(∑
a<b

φabφab + ln �

)
, (A.2)

where

� =
∑
{S}

∏
i

exp

(
− 1√

N

∑
a<b

φabS
a
i Sb

i

)
.

Due to the factor 1/
√

N , � can be expanded in terms of α = P/N . To the lowest order, we
obtain

ln � ∼ 1

2

∑
a<b

φ
2
ab + PN ln 2. (A.3)

Performing the Gaussian integral, we obtain

ln Z/PN ∼ − 1
4α ln(1 + β) + ln 2. (A.4)

Note that the higher order terms of φab in ln � give the higher order terms of α in ln Z/PN .
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To obtain Zn given by (13), we introduce n replicas for all integral variables and denote
them by φα

ab, φ
α

ab and Saα
i . Then we perform the transformation Saα

i → ηa
i S

aα
i in �n, followed

by the sum over ηa
i = ±1. Then we have

Zn =
∏

α,a<b

∫
dφ

α

ab dφα
ab

2π
√−1

exp

(
−β

2

∑
a<b

g
(
φα

ab

))
exp

(∑
a<b

φ
α

abφ
α
ab + ln �n

)
, (A.5)

where

�n = 1

2PN

∑
{η}

∑
{Sα}

∏
i

exp

(
− 1√

N

∑
a<b

ηa
i η

b
i Kab,i

)

with

Kab,i =
n∑

α=1

φ
α

abS
aα
i Sbα

i .

To the lowest order of α, we have

�n ∼
∑
{Sα}

exp

⎛
⎝1

2

∑
a<b

∑
αβ

φ
α

abφ
β

abQ
αβ

ab

⎞
⎠ , (A.6)

where Q
αβ

ab are defined by (12). Since g(x) = x2, integrals over φ and φ in Zn are Gaussian,
and we obtain the expression (13). We should note that, in the higher order of α, there arise
couplings among different component pairs and more than two replica indices in (A.6).

Appendix B

In this appendix, we describe the derivation of the one-step RSB free energy. In the one-
step RSB ansatz, Qαβ has eigenvalues Xn = 1 − Q1 + m(Q1 − Q0) + nQ0, Xm = 1 − Q1

+ m(Q1 − Q0) and X1 = 1 − Q1 with degeneracy 1, n/m − 1 and n − n/m, respectively.
Then using (14) and (18), we obtain

ln Zn =−1

4
P(P − 1)

{
ln(1 + βXn) +

( n

m
− 1

)
ln(1 + βXm) +

(
n − n

m

)
ln(1 + βX1) − nβ

}
− 1

4
N(P − 1){n(n − m)�0Q0 + n(m − 1)�1Q1} − F {�}, (B.1)

where

F {�} = −1

4
NP

{
n(n − m)q2

0�0 + n(m − 1)q2
1�1

}
− 1

2
nNPq1�1 + NP ln

∫ (∫
(2coshA)mDy

) n
m

Dx,

where A = √
q0�0x +

√
q1�1 − q0�0y. By taking the limit n → 0, we obtain (19).

Let us calculate the low-temperature expression of the last term in βf , which is given by

β	f = 1

m

∫
Dx ln

∫
Dy(2coshA)m. (B.2)

For the simplicity, we assume q0 = 0. For large β, 2 cosh A is approximated to be exp |A|.
Then the integral over y is given by 2 exp(m2q1�1/2). Using this expression and setting
q0 = 0, q1 = 1 in (19), we obtain the free energy (21).
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Appendix C

In this appendix, we study the fluctuation modes of the action. Setting �
αβ

ab = �αβ + δ�
αβ

ab

and Q
αβ

ab = Qαβ + δQ
αβ

ab and keeping the second-order terms in the exponent of (14), which is
denoted by δ2A, we have

δ2A = 1

2

∑
a<b,(αβ)(γ δ)

G(αβ)(γ δ)δQ
αβ

ab δQ
γδ

ab +
N

P

∑
a<b

∑
(αβ)

δ�
αβ

ab δQ
αβ

ab

+
N

2P 2

( ∑
a<b

∑
(αβ)(γ δ)

δ�
αβ

ab δ�
γδ

ab Ā(αβ)(γ δ) +
∑

a,b �=a,c �=a

∑
(αβ)(γ δ)

δ�
αβ

ab δ�γδ
ac B(αβ)(γ δ)

)
,

where

G(αβ)(γ δ) = ∂2G(Q)

∂Q
αβ

ab ∂Q
γδ

ab

, (C.1)

with G(Q) = ∑
a<b Tr ln(1 + βQab)/2 and Ā(αβ)(γ δ) = A(αβ)(γ δ) − 2B(αβ)(γ δ).

First we discuss the component space. Let us set δ�
αβ

ab = ∑
I δ�

αβ

I ψ
(I)
ab , δQ

αβ

ab =∑
I δQ

αβ

I ψ
(I)
ab and find the normalized vectors such that

∑
a<b ψ

(I)
ab ψ

(I ′)
ab = δI ′ and∑

a,b �=a,c �=a ψ
(I)
ab ψ(I ′)

ac = εI δI ′ . The second equation is to diagonalize the matrix in the

component space. The simplest mode is given by ψ
(0)
ab = (P (P −1)/2)−1/2, i.e. homogeneous

mode with degeneracy 1. This mode gives ε0 ∼ 2P . There are two kinds of mode which are
orthogonal to ψ

(0)
ab . One is defined by ψ

(1)
kb = x,ψ

(1)
ab = y for arbitrary k and a, b �= k. We

have 2x + (P − 2)y = 0,
∑

b ψ
(1)
kb = (P − 1)x and

∑
b ψ

(1)
ab = x + (P − 2)y = −x for a �= k.

Using these relations, we have ε1 ∼ P with degeneracy P − 1. Note that these modes are not
orthogonal to each other. This will not matter in the following argument. The third modes are
defined by

∑
b ψ

(2)
ab = 0 for all a. This mode gives ε2 = 0 with degeneracy P(P − 3)/2. By

using these eigenmodes, we write

δ2A/NP = 1

2

∑
I

(δQI δ�I )

(
αG 1
1 KI

) (
δQI

δ�I

)
, (C.2)

where KI is given by Ā/P for I = 2 and (εI /P )B for I = 0, 1. Then we can discuss the
eigenmodes in the replica space for each I. The matrices G, A and B are diagonalized by the
eigenvectors which have the same structure in replica space. This problem was well studied in
spin models [15, 16]. They are replaced by the eigenvalues for the corresponding eigenvectors.
The eigenvectors of G and (εI /P )B(or Ā/P ) are mixed by the off-diagonal terms in (δQ, δ�).
Apparently, eigenmodes I = 2 do not become marginally stable since Ā/P → 0 for P → ∞.
Thus we restrict ourselves to I = 0, 1.

For the replicon modes, αG is replaced by λQ = αβ2/(1 + βX1)
2 [9, 10] and B is

replaced by λ� = q2
1 (1 − 〈S〉2)2. By replacing δ� → √−1δ�, we obtain the product of two

eigenvalues 1 − (εI /P )λ�λQ for replicon modes in (δQI , δ�I ). Since the second term in this
expression is smaller than 1 in paramagnetic phase and increases as temperature decreases,
the largest eigenvalue ε0 ∼ 2P should be chosen in front of λ� to give the marginally stable
mode.

Let us remark on the contribution of Gaussian integrals of eigenmodes to the action.
The number of the eigenmode I = 0 is of order 1 and they do not modify the leading
term of the action. The number of the eigenmodes I = 1 is of order P and they also do
not modify the leading term of the action. The number of modes I = 2 is the same order
of action, P 2. However, they do not contribute to the leading term of action since these
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eigenvalues have the form 1 − c/P with a constant c of order 1 and the contribution is given
by P 2 ln(1 − c/P ) ∼ cP , which is the next order of P.
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